

Grey Area Mitigation for Hybrid RANS-LES Methods

Status of complex test cases for non-zonal methods

Johan Kok

19-20/03/2015

Complex test cases for non-zonal methods

	CFDB	NTS	DLR	FOI	NLR	ONERA	UniMAN
I.1 Helicopter	Р						РС
I.2 Delta wing	R				Ref C		
I.3 3-element airfoil		R	С	R	Р		Р
I.4 2D hump		R Ref C		R			
I.5 Round jet	R C	R Ref			R		

R = (initial) Results P = Planned

Ref = Reference result

C = Coordinator

CFDB, FOI, NLR: planned according to DoW

NTS, UniMAN: additional contributions

Non-zonal GAM approaches used for complex test cases so far

- NTS:
 - modified length scale $\Delta_{max} \Rightarrow \Delta_{SLA} = \widetilde{\Delta}_{\omega} F_{KH}$
 - length scale $\widetilde{\Delta}_\omega$ sensitized to direction of vorticity vector
 - F_{KH} : Kelvin-Helmholtz sensor / detection quasi 2D regions
- CFDB:
 - $-\sigma$ (and WALE) algebraic eddy-viscosity models of Nicoud *et al.*
 - plus $\widetilde{\Delta}_{\omega}$
- NLR:
 - High-Pass Filtered (HPF) SGS model
 - plus stochastic backscatter SGS model
- FOI:
 - Energy-backscatter function + HYB0
 - $-\delta_{\min()}$ used to redefine LES length scale
 - energy scale transfer + HYB0

I2 Delta wing

- NASA delta wing with sharp leading edge used in VFE-2
 - vortex breakdown ($\alpha = 23^{\circ}$, $M_{\infty} = 0.07$, $Re_{mac} = 10^{6}$)
 - experiment of TU Munich
 - common grid (6.3 M cells)
- CFDB: Results
 - standard SA-DDES + Δ_{max}
 - SA- σ -DDES + $\widetilde{\Delta}_{\omega}$
- NLR: Results
 - standard SST-DDES (Reference)
 - DX-LES + HPF SGS model (*Reference*)
 - DX-LES + HPF + stochastic backscatter SGS model (Running)

I2 Delta wing

12 Delta wing: Mean Cp

12 Delta wing: RMS Cp

12 Delta wing: Resolved Turbulent kinetic energy

12 Delta wing: Resolved Turbulent kinetic energy

12 Delta wing: Time-averaged velocity field

12 Delta wing: Time-averaged velocity field

I2 Delta wing – Conclusions

- GAM methods of CFDB (SA- σ -DDES + $\tilde{\Delta}_{\omega}$) and NLR (HPF DX-LES) give very similar results
- Strong improvement in terms of levels of pressure fluctuations and resolved turbulence
- Does not lead to improved prediction of location of vortex breakdown

13 SA-based IDDES of 3-element airfoil

13 SA-based IDDES of 3-element airfoil

... but does not cause any visible alteration of the mean Cf and Cp

I3 LEISA F15 HL flow case (FOI)

- Grid taken from the ATAAC project, from which the HYBO computation is take as reference (AoA = 6°, local laminar BL)
- ~19700 2D unstructured grid with 8%C spanwise extension and Nz = 40)

• HYB0 compared to HYB0M-min (with δ_{min})

- Relatively high energy resolved in the cove of main wing
- More shallow flap T.E separation
- HYBOM computation needs to run more time steps for statistical analysis
- Mandatory grid and settings will be used

Resolved turbulent kinetic energy

I4 SA-based DDES of hump flow

The use of $\Delta = \Delta_{SLA}$ results in unlocking KH instability and acceleration of transition to developed 3D turbulence

I4 SA-based DDES of hump flow

As a result, mean Cp and Cf prediction tangibly improves and gets close to that of IDDES with $\Delta = \Delta_{max}$

I4 SA-based DDES of hump flow

This improvement is also seen in prediction of the reattachment point

Model	Separation	Reattachment
SARANS	0.66	1.24
SA DDES, $\Delta = \Delta_{max}$	0.66	1.32
SA DDES, $\Delta = \Delta_{SLA}$	0.66	1.13
SA IDDES, $\Delta = \Delta_{max}$	0.66	1.15
Expt.	0.67	1.12

I4 HYB0 with scale energy transfer (FOI)

- Transport equation for Δ
- Reduces SGS viscosity
- Some enhancement of initial structures
- Still not sufficiently early transition (numerical contamination?)
- Still running...

NTS: Conclusions I3 (3-element airfoil) and I4 (hump)

- Based on the simulations of the hump and 3-element airfoil, it can be concluded that:
 - The use of $\Delta = \Delta_{SLA}$ results in a significant improvement of DDES predictions and is "neutral" in IDDES (does not lead to any non-desirable "side-effects" caused by interaction with empirical functions of IDDES)

I5 Round jet

- Unheated, static round jet at $M_{\infty} = 0.9$, $Re_D = 1.1 \times 10^6$
 - Pronounced Grey Area for standard DES methods
 - RANS profiles prescribed at nozzle exit plane
 - Experimental data: Bridges et al.
 - common grid "G3" (8.8 M cells)
- CFDB: Initial results (short time sample / issues with numerics & BC settings)
 - SA-σ-DDES + $\tilde{\Delta}_{\omega}$
- NLR: Results
 - X-LES with HPF + stochastic backscatter
- NTS: Results
 - SA-DDES + $\widetilde{\Delta}_{\omega}F_{KH}$

I5 Round jet: instantaneous vorticity magnitude

Initial results (CFDB):

SA- σ -DDES + $\widetilde{\Delta}_{\omega}$

15 Round jet: instantaneous eddy viscosity ratio

I5 Round jet: instantaneous eddy viscosity ratio (RLT region)

I5 Round jet: instantaneous eddy viscosity ratio (RLT region)

15 Round jet: mean velocity and RMS

centreline

lip line

15 Round jet: mean velocity profiles

15 Round jet: preliminary conclusions

- Very comparable results between NTS and NLR → excellent prediction of aerodynamic jet characteristics
- CFDB results differ somewhat, open issues remain:
 - New computations planned for final cross-plotting with improved case settings / solver:
 - Same nozzle exit profiles as NTS (from std. SA-RANS)
 - Sufficiently long time sample
 - Improved numerical settings
 - Improved compressible OpenFOAM solver for aeroacoustics
- Acoustic results were defined as optional in TC description, however NTS has the data readily available, NLR and CFDB have stored FWH data, so that cross-plotting for this task is considered for the final meeting