

Grey Area Mitigation for Hybrid RANS-LES Methods

Status at NLR Johan Kok

23-24/10/2014

Non-zonal Grey Area Mitigation approaches

- Reduction of SGS stresses:
 - baseline: High-Pass Filter (HPF) SGS model
 - alternatives:
 - recursive high-pass filter (Butterworth)
 - Vreman and Nicoud algebraic eddy-viscosity models
- Triggering of instabilities:
 - baseline: stochastic eddy-viscosity SGS model
 - alternative:
 - stochastic model of energy backscatter
 - temporal and spatial correlation of stochastic terms
- All tested for test case F2 Spatial Shear Layer
 - X-LES (k- ω based DES)
 - fixed RANS-LES interface at trailing edge for testing only
 - coarse grid: 1.3 M cells

High Pass Filter

- Reduction subgrid stresses: $\tau \sim v_t S$
- Existing HPF SGS model:

- compute SGS stresses from velocity fluctuations
$$u'$$

 $\tau_{ij} = 2\nu_t \left(S'_{ij} - \frac{1}{3}\partial_k u'_k \delta_{ij}\right) - \frac{2}{3}k\delta_{ij}$, if $l > C_1 \Delta$
 $u'(x,t) = u(x,t) - \frac{1}{t} \int_0^t u(x,s) ds$

- this high-pass filter has some limitations in applicability
- Alternative 1: Butterworth-type filter
 - filtering of frequencies below certain cut-off frequency
 - recursive definition

$$\Sigma_{k=0}^P a_k u'(t_{n-k}) = \Sigma_{k=0}^Q b_k u(t_{n-k})$$

Spatial shear layer: Alternative HPF SGS model

Baseline HPF (+ stochastic) Butterworth HPF (+ stochastic) 1st order $f_c = 10 u_1/L = 415.4 \text{ Hz}$ $(T_c = 0.1 \text{ CTU})$ Momentum thickness

Reduction of eddy viscosity

- Reduction subgrid stresses: $\tau \sim v_t S$
- Alternative 2:
 - reduce eddy viscosity using algebraic SGS models
 - Vreman model (2004) and Nicoud σ model (2011)

$$v_{sgs} = \left(C_{sgs}\Delta\right)^2 D_{sgs}(u)$$

- $D_{sgs}(u)$ determined by invariants of $G = (\nabla u)^T (\nabla u)$
- zero eddy viscosity for pure shear (Vreman) or for nominally 2D flow (Nicoud σ)
- same approach as CFDB: obtain Vreman or Nicoud model when balance between production and dissipation in k-equation

$$P_k = v_t D^2 \quad , \quad D = \begin{cases} S, & \text{if } l \leq C_1 \Delta \\ \sqrt{\beta_k} \left(\frac{C_{sgs}}{C_1}\right)^2 D_{sgs}(u) \,, & \text{if } l > C_1 \Delta \end{cases}$$

Spatial shear layer: Vreman and Nicoud models

Spatial shear layer: Nicoud o model

Triggering of instabilities

- Existing stochastic model:
 - modification of eddy viscosity with random variable $\xi = N(0,1)$

$$u_t = \xi^2 C_1 \Delta \sqrt{k}$$
 , if $l > C_1 \Delta$

- crude approach
- less effective when combined with HPF SGS model
- Alternative stochastic model: modelling of backscatter
 - based on models of Leith (1990) and Schumann (1995)
 - independent of HPF SGS model

$$\tau_{ij} = 2\nu_t \left(S_{ij} - \frac{1}{3} \partial_k u_k \delta_{ij} \right) - \frac{2}{3} k \delta_{ij} - R_{ij} , \text{ if } l > C_1 \Delta$$
$$\nabla \cdot \mathbf{R} = \nabla \times (C_L k \boldsymbol{\xi}) , \quad \boldsymbol{\xi}_k = \mathsf{N}(0, 1)$$

 $-\nabla \cdot \mathbf{R}$ is solenoidal: does not function as noise source

Spatial shear layer: Stochastic backscatter model

Baseline stochastic eddy viscosity (+ HPF) Stochastic backscatter model (+ HPF) Momentum thickness

Triggering of instabilities

- Existing stochastic model
 - ξ drawn independently at every grid point and at every time step
 - less effective if high aspect ratios of grid cells ($\delta x \ll \Delta$) or if time step smaller than subgrid time scale ($\delta t \ll \Delta/\sqrt{k}$)

Triggering of instabilities

- Introduce spatial and temporal correlation
 - reasonable to assume stochastic variables to be correlated if $\delta x < \Delta$ or $\delta t < \Delta/\sqrt{k}$
 - spatial correlation: implicit filtering

$$(I - \beta_i \delta_i^2) (I - \beta_j \delta_j^2) (I - \beta_k \delta_k^2) \xi = \zeta , \ \beta_i = C_\Delta (\Delta / \delta_i x)^2$$

 ζ = uncorrelated ξ = spatially correlated

- temporal correlation: stochastic differential equation (Schumann) $\rho\xi dt + \left(\frac{\partial\rho\xi}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}\xi)\right)\tau dt = \sqrt{2\tau} dt \rho\eta , \quad \tau = C_{\tau}\Delta/\sqrt{k}$ $\eta = \text{only spatially correlated}$ $\xi = \text{spatially and temporarly correlated}$

Stochastic backscatter model with spatial correlation

uncorrelated stochastic variable ξ

spatially correlated stochastic variable ξ

Stochastic backscatter model with spatial & temporal correlations

40

30

20 10

stochastic eddy viscosity

isosurface Q = 500 u_{\star}^2/L^2

stochastic backscatter

stochastic backscatter temporal and spatial correlation

Velocity profiles

Energy spectra

• fixed vs. free RANS-LES interface (fully non-zonal)

Conclusion

- Alternative methods to reduce subgrid stresses
 - Butterworth HPF equivalent to reference
 - Vreman model is ineffective
 - Nicoud σ model slighty better than reference
- Alternative stochastic model
 - stochastic backscatter model with temporal and spatial correlation gives strong improvement

Future work

- Testing other combinations of GAM approaches? (Task 2.1)
 - Nicoud σ model + stochastic backscatter model?
- Testing best approach for complex test cases (Task 2.2)
 - round jet

3-element airfoil