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Introduction
This report presents detailed formulations of different enhanced/new techniques developed in the course of the Project for injecting inflow turbulent content at LES inflow within embedded RANS-LES methods and description of their incorporation into CFD codes. Its primary objective is provision of information needed to enable the partners to try out each other's methods and to implement the techniques into common assessment platform and carrying out a comparative study of the performance of all the methods on the fundamental and industrial test cases.

The report includes contributions of four Partners involved in the work on WP31 (DLR, NTS, ONERA, and UniMan) compiled by NTS.


DLR contribution (Chapter 1 of the report) outlines their approach to embedded LES, which is based on IDDES approach using Algebraic Boundary-Layer Quantities in combination with the Synthetic-Eddy Method (SEM) of UniMan and different underlying RANS models up to Reynolds-stress closures.

NTS contribution (Chapter 2) presents two techniques aimed at generation of inflow synthetic turbulence. The first one presents a combination of a slightly improved variant of previously developed Synthetic Turbulence Generator (STG) for aerodynamic applications with an Internal Damping Layer technique ensuring suppression of spurious noise created by synthetic turbulence at the RANS-LES interface, thus widening the range of applicability of the STG to aeroacoustic problems. The second technique (Volumetric STG), although heavily relying upon the first one, is new in the sense that it is based on introducing of empirically designed volume sources into the momentum- and turbulent kinetic energy transfer equations rather than on the direct injection of fluctuating velocity at the RANS-LES interface. This approach does not require coincidence of the interface with a grid surface and, therefore, is more flexible in terms of grid structure and topology. Other than that, provided that the source region has a sufficient size in the streamwise direction, it also eliminates or at least considerably reduces the spurious noise, thus being a potentially useful alternative to the Internal damping Layer within the STG technique.


ONERA contribution (Chapter 3) presents ZDES methodology based on a problem dependent partitioning of the computational domain, thus making possible the use of various formulations within the same simulation and allowing computation of a wide range of flows. Three types of flows are distinguished which are treated differently by ZDES via the use of different length-scales: 1) flows with fixed separation i.e., those where the separation is triggered by a relatively abrupt variation of the geometry; 2) flows with unfixed (pressure induced) separation on smooth curved surfaces, and 3) flows where the separation is strongly influenced by the state of the incoming boundary layer. For the third class of flow, an inflow turbulent is injected with the use of the Synthetic Eddy Method of UniMan extended to ZDES. A detailed formulation of this technique is provided ensuring a possibility of its numerical implementation into common assessment platform.

Finally, UniMan contribution (Chapter 4) contains a detailed overview of their Divergence-Free Synthetic Eddy method and presentation of its improved variants developed in the course of the project. The improvements include 1) re-defined eddy intensity and shape function involved into the original formulation and 2) relaxing the constraint of having a uniform eddy distribution, which enhance both technological aspects of the original method and the quality of created artificial turbulence.
1.
DLR Contribution
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DLR applies the unstructured compressible TAU code using the “Algebraic Delayed DES” approach (ADDES) in combination with the “Synthetic-Eddy Method” (SEM) as well as grid adaptation, in order to conduct embedded LES computations of fundamental and industrial test cases. Different RANS models up to Reynolds-stress closures are used for detailed assessment of the approach.
1.1. RANS/LES Switch Using Algebraic Boundary-Layer Quantities (ADDES)
The Algebraic DDES (ADDES) [1] uses algebraic boundary layer quantities to redefine the switch between RANS and LES regions instead of using the fd function of classic Delayed DES (DDES). It aims to ensure RANS mode throughout the whole attached boundary layer even for strong adverse pressure gradients, and to reliably shift the RANS/LES interface towards the wall in separation regions, in particular for thin separation bubbles on smooth surfaces.
For this purpose the flow solver should be extended by an additional data structure: For every wall node (of the relevant boundaries) it should provide a list of points lying on an approximate wall-normal ray in order to store and process local BL profiles in each time step. Search operations (e.g. for the BL edge) as well as line integrations (for integral BL quantities) are required. Moreover, the implementation must be able to flag regions above the walls as attached or detached, depending on the evaluated criteria in each wall-normal ray (see below).
The method can be most easily implemented in structured solvers by exploiting the ijk-metric. For unstructured solvers, such as DLR-TAU, it is most suited for meshes whose structured layer fully contains the boundary layer, but TAU can also find wall-normal rays in hybrid meshes containing triangular elements, see Fig. 1 (left).
1.1.1 Detection of the Boundary-Layer Thickness

For determining the boundary-layer thickness δ, the primary choice is to use δ99, being the wall distance where the local velocity U along a wall-normal profile reaches for the first time 99% of the boundary-layer edge-velocity Uedge. We compute Uedge from the pressure pw at the corresponding wall node using the compressible Bernoulli equation:
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In some cases Uedge cannot be obtained by searching the maximum velocity in wall-normal direction. One example is the flow on the pressure side in the leading edge region of an airfoil, where the velocity maximum is reached in the accelerated inviscid outer flow and not at the outer edge of the boundary layer. Thus, two other methods for approximating the boundary layer thickness can be used as fallback if the first approach fails under the respective flow conditions, cf. [1].
1.1.2 Criteria for Flow Separation

In several publications the value of the shape factor H = δ*/Θ, with:
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   and:    [image: image5.png]


  ,
is used as an empirical criterion for pressure-induced separation of subsonic turbulent boundary layers. In [2] the separation criterion Hcrit ≥ 2.76 ± 0.23 (obtained via similarity analysis) is shown to be in good agreement with existing experimental data (note that H ≈ 1.3-1.4 in constant-pressure turbulent BLs). 


This criterion is adopted in ADDES, but requires adjustments to the respective underlying RANS model. Based on different flow cases with pressure-induced separation (diffuser, airfoil, and engine nacelle at stall) which cover a broad range of flow conditions (2D/3D, Re-number, angle of attack) the following model-dependent separation criteria have been derived so far:

	Spalart-Allmaras 1-eq model:
	Hcrit = 2.4

	Menter-SST 2-eq model:
	Hcrit = 3.3

	Jakirlic-Hanjalic εh-Reynolds-stress model:
	Hcrit = 3.2



In TAU’s ADDES implementation the values of δ* and Θ are computed by simple numerical integration (trapezoidal rule) along the wall-normal rays, with the detected boundary-layer edge δ as upper integration boundary.
1.1.3 Determination of RANS and LES Regions
The boundary-layer thickness δ and the shape factor H can now be used to decide locally whether the flow is attached or separated. This determines the new delay function fd,ADDES, which basically replaces fd in DDES, i.e. fd,ADDES = 0 for attached and fd,ADDES = 1 for separated regions.


Denote δw and Hw the values of δ and H at the wall node [image: image7.png]


. Then we set this value for all nodes on the corresponding wall-normal ray [image: image9.png]A(x]..)



. Now, given a node [image: image11.png]X e A(X],,)



 with wall distance dw, set:

fd,ADDES = 0 ,  if          dw < δw and Hw < Hcrit ,

fd,ADDES = 1,  if either dw > δw or Hw > Hcrit .

Exemplarily, Fig. 1 (right) shows the fd distribution computed for a 2D hump flow (based on a steady flow field computed with SST-RANS), which illustrates the capabilities of ADDES to detect local separation. In combination with synthetic turbulence (see below), the ADDES approach can essentially be used for embedded LES of separated flow regions. In case of attached flows, such as the boundary layer of test case F.1, the desired switch from RANS to LES has to be set manually.
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Figure 1  Left: Wall-normal rays for ADDES on a hybrid (structured/unstructured) 2D airfoil mesh (DLR-TAU code). Right: RANS/LES sensor function fd computed by ADDES for a separated 2D hump flow.

1.1.4 Coupling with IDDES

For embedded LES of wall-bounded flows, such as the flat-plate boundary layer (test case F.1), the hybrid approach has to act as Wall-Modelled LES (WMLES) in the resolved flow regions. For this the ADDES is combined with “Improved DDES” (IDDES) [4], which adds an additional WMLES branch in the hybrid length scale compared to DDES. The IDDES definition of lhyb reads [4]:
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 , with:   [image: image17.png]fo = max{(1 — fu), fi)



  .
Now, to preserve both the ADDES detection mechanisms for attached/separated flow and the WMLES capability of IDDES (which is basically controlled by the functions fe and fB), the ADDES sensor replaces only the function fdt in the IDDES equations. Then, fd,ADDES = 0 ensures RANS mode throughout the BL, whereas fd,ADDES = 1 yields WMLES close to walls and classic DES in off-wall regions.


Again, for the attached flat-plate case F.1, fd,ADDES has to be manually set to 1 in the desired embedded LES region.

1.2 Reynolds-stress Modelling as underlying RANS closure

Besides classic SA- and SST-based approaches, which can be straightforward adopted for ADDES from classic Delayed DES [3], DLR aims to assess the effect of higher-order RANS modelling on the overall simulation quality of embedded LES. For this, a combination to the near-wall εh-Reynolds-stress model of Jakirlic & Hanjalic (JHh-RSM) with ADDES [1] is considered, which is briefly outlined below.


The considered version of the JHh-RSM [5] employs a scalar length-scale equation for the homogeneous dissipation rate εh and an anisotropic dissipation model to provide the dissipation-rate tensor [image: image19.png]


 as sink term in the Reynolds-stress equations. For a general coupling with DES, this term is scaled by the ratio of RANS- and hybrid length scales (following common practice, e.g. SST-DES):
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In ADDES (like DDES), lhyb is provided by:
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,

where [image: image26.png]Chre



 for JHh-RSM-based DES has been calibrated as [image: image28.png]


 [1]. 


Moreover, the low-Reynolds functions in the JHh-RSM have to be omitted in LES regions (i.e. providing “low-Re correction”, similar to that proposed for SA-based DES), which is achieved by explicitly blending any RANS-model coefficient Ci as (see [1] for more details):
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In JHh-ADDES, the function fd is not simply taken as fd,ADDES (see previous section), but reads instead:
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  ,   

where:

[image: image36.png]v+0.09-vk-Ipgs

"d,DES =





and:  
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  .


The additional part fd,DES retains a thin RANS layer near the wall in separated regions (similar to classic DDES), which is required to preserve the correct low-Reynolds RANS modelling of the JHh-RSM. The resulting fd distribution around the trailing-edge separation of a single-element airfoil at stall (based on a JHh-RSM RANS computation) is depicted in Figure 2.

[image: image39.emf]
Figure 2  RANS/LES sensor function fd computed by ADDES based on the JHh-εh-RSM. Grey: fd = 0 (RANS), white: fd = 1 (LES). For reference, the actual BL thickness δ is indicated.
1.3 Synthetic-Eddy Method

To model the transition from RANS to LES in embedded LES, DLR applies the Synthetic-Eddy Method (SEM) [6] at the given interface. Basically, the SEM randomly generates a number of vortices in a rectangular domain around the interface plane, which induce unsteady synthetic velocity fluctuations in accordance with given RANS input statistics.

The induced fluctuation components at the location [image: image41.png]x, =(x,v,2)7



 are given by:
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  ,   with:   [image: image45.png]


  ,

where N is the total number of vortices in the domain, aij is the Cholesky decomposition of the Reynolds-stress input tensor (taken from RANS data somewhat upstream of the interface), and [image: image47.png]


 is the randomly computed intensity of the kth vortex in j-direction (where εj needs to obey [image: image49.png]{;)




 and [image: image51.png]()



). The shape function [image: image53.png]


 depends on the total volume of the rectangular domain VB, the local vortex radius σ, and the 1D-shape functions [image: image55.png]


 for each coordinate direction. In the basic approach these are given by:


[image: image58.png]): {ﬁa—m if ll<1
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0 otherwise




and 
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where lRANS is the integral RANS length scale, κ = 0.41 the von-Karman constant, and [image: image61.png]A = max(Ax, Ay, Az)



 the LES filter.

The synthetic vortices are convected through the rectangular domain with a constant global “bulk” velocity of the local boundary layer, and they are re-generated at random positions of the inflow of the domain as soon as they reach the outflow. Note that the streamwise extent of the domain is given by [image: image63.png]+max(0)



 around the interface, whereas height and span are given by the size of the interface plane, all together determining VB. The suggested (constant) number of synthetic eddies is [image: image65.png]


. 


For more details on the original SEM refer to [6]. Several interesting modifications of the method (e.g. “Divergence-Free SEM”, anisotropic shape functions fi, etc.) have also been implemented in the DLR-TAU code [7] and can be tested in Go4Hybrid, as well. 


To introduce the fluctuations into the flow solution they are transformed into suited source terms in the momentum equations. For ADDES, these terms only act in the points of those wall-normal rays, which are flagged as RANS/LES interface (either manually fixed or computed via the separation criterion).
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Contribution of NTS
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2.1. Introduction

It is firmly established now that injection of turbulent content at the RANS-to-LES interface is a powerful tool for the Grey Area Mitigation (GAM). A few approaches to creating such content are currently developed, all having specific pros and cons (see, e.g., a review part in [1]). Particularly, NTS has developed a simple and robust procedure for the generation of synthetic turbulence within an embedded RANS-LES of attached or mildly separated wall-bounded flows and of free shear flows [2]. This synthetic turbulence generator (NTS STG) has been validated on a range of canonical flows (developed channel flow, zero pressure gradient boundary layer, plane mixing layer), as well as on a more complex flow over the wall-mounted hump with non-fixed separation and reattachment and shown to ensure a rapid conversion from modeled to resolved Reynolds stresses, thus resulting in an elimination or, at least, significant mitigation of the grey area issue. However the procedure assumes the use of structured multi-block grids with RANS-LES interface coinciding with a grid surface, which hampers its incorporation into general unstructured CFD solvers. Other than that, similar to all STGs available today, it results in creation of spurious noise sources at the RANS-LES interface caused by an abrupt appearance of unsteady vortical structures there, which precludes from its application to aeroacoustic problems.

In this report we briefly present two approaches aimed at diminution of these deficiencies of the NTS STG [2]. The first one is a combination of its slightly improved version with an “internal damping layer” (IDL) technique allowing application not only to aerodynamic but also to aeroacoustic problems (detailed description of the improved “aerodynamic” version of the STG and of the IDL-technique can be found in the paper [1] accepted for publication in FTAC). The second approach is a new Volumetric STG (VSTG hereafter). Unlike the NTS STG and many other similar STGs, this generator is based on introducing of specially designed volume sources (“body forces”) into the momentum- and turbulent kinetic energy transfer equations. A major advantage of such an approach over injection of turbulent fluctuations of velocity at the RANS-LES interface is its higher flexibility in terms of grid-structure, which facilitates its implementation in different CFD codes. In addition, as demonstrated below, with sufficiently stretched source region, VSTG provides also an alternative way of suppressing of spurious noise generated by synthetic turbulence.


For the sake of completeness, below we first formulate the aerodynamic STG version [1], then describe the IDL technique, and after that outline the VSTG, which heavily relies on the STG [1]. Some results illustrating performance of the developed methods are presented as well. 


Note that all the developed methods are intended for working within zonal/embedded RANS-LES approaches with either well resolved LES or LES with near-wall modeling (WMLES). Particular examples are those for DDES with improved wall-modelling capabilities (IDDES [3]) with k-ω SST RANS underlying turbulence model of Menter [4].

2.2.
Aerodynamic Version of NTS STG [1]

Similarly to other STG methods, the velocity vector at a point 
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Again similarly to many other methods, 
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and the 
[image: image75.wmf]ij

R

= 
[image: image76.wmf]>

¢

¢

<

j

i

u

u

 are the components of the Reynolds stress tensor.


Then, the velocity fluctuations 
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where 
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Here: 
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All the random numbers involved in (4) are defined only once, that is, they are not changed in time. To introduce the time-dependence of the fluctuations we employ a so-called “wave convection” approach, which is somewhat different from the way of imposing unsteadiness of the fluctuations in the first formulation of the NTS STG [2]. Namely, we define the pseudo-position vector 
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where 
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The normalized amplitudes of the modes 
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where 
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 is a prescribed spatial spectrum of the kinetic energy of turbulence represented by a modified von Karman spectrum, shown in Fig. 1 and defined by the formula:
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Here 
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Figure 1: Energy spectrum used in STG


The wave number 
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Here 
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Figure 2: Profiles of ingredients of length-scale 
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 (8) (upper row) and its distribution in different shear flows (lower row). First column: plane channel; second column: ZPG BL; third column: free shear layer.


In the near-wall part of the boundary layer (8) makes 
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The first function is aimed at ensuring the damping of the spectrum in the vicinity of the wave number corresponding to the Kolmogorov length-scale 
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The function 
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 damps the spectrum at wave numbers larger than the Nyquist value, 
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where 
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The set of wave numbers used in (4) is fixed, i.e., it is common for the entire RANS-LES interface, and, as proposed in [8], forms a geometric series, which allows a considerable decrease of the number of modes compared with a uniform distribution of wave numbers
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Here 
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Finally, if LES is performed with the use of a differential subgrid model, as in DES, some boundary conditions for the subgrid turbulence characteristics should be specified at the interface. Specifically, for LES or WMLES/IDDES with the SA or k- SST background models, these conditions are as follows. 

The SGS eddy viscosity is computed with the use of an algebraic SGS model (e.g., the Smagorinsky model for LES or the algebraic hybrid model [3] for WMLES). Then, for the SST model, the field of 
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 at the LES inflow is set equal to 
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. Although this approach is rather crude, it does not cause any tangible deterioration of the LES solutions (see [3]). 


To summarize, the most important features of the STG method outlined above are as follows.


The method employs a set of wave numbers 
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, which is fixed in time and over the entire RANS-LES interface and ranges from the value corresponding to the largest wavelength of the considered problem up to the Nyquist limit. Other than that, the von Karman energy spectrum (7) defining the normalized amplitudes of different Fourier modes 
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 ensuring that larger wavelength modes get scaled by very small amplitudes near walls, where the length scale 
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 (8) is small (see Fig. 2), while smaller wavelength modes get scaled by very small amplitudes away from walls. As a result, the lateral size of the energy containing structures created by the STG at the LES inflow turns out to be small in the inner and large in the outer flow regions. Finally, the global time scale 
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 involved in the wave-convection form of time-dependence for the synthetic velocity fluctuations (4) results in roughly the same streamwise size for all the vortical structures downstream of the interface. A combination of these properties of the STG ensures the formation of strongly anisotropic (elongated) eddies near walls, and nearly isotropic eddies away from walls. 


One more important feature of the STG is that all the random quantities entering equation (4) are defined only once, at the beginning of the simulation (i.e., there are no random changes of phase, like in some other STG’s). With the fixed set of wave numbers for the entire RANS-LES interface, this prevents the generation of unviable high-frequency “hash” which can lead to “near-laminarization” (damping of the synthetic turbulence) downstream of the interface.


An example of the synthetic turbulence field generated on the basis of the k- SST RANS in a channel flow with the use of the STG we just described and its comparison with the field from an LES of this flow carried out with periodic conditions in the streamwise direction is shown in Fig. 3.  One can see that at least qualitatively the synthetic and “real” (LES-predicted) fields are quite similar.
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Figure 3: Synthetic velocity field in a section of developed channel flow generated with the use of STG (upper row) and obtained in LES with periodic streamwise boundary conditions (lower row)


A number of examples illustrating performance of the described aerodynamic version of the NTS STG can be found in [1]. They show that as far as aerodynamic flow characteristics are concerned, the STG offers a robust tool for creating turbulent content in the framework of zonal RANS-(WM)LES approaches, which ensures adaptation of synthetic turbulence “injected” at the RANS-LES interface to “natural” turbulence within a fairly short (2-4 boundary layer thicknesses) adaptation region. 


However, if applied “as is” to aeroacoustic problems, e.g. to the airframe noise prediction, this version leads to unacceptable results: the “genuine” acoustic field turns out to be overwhelmed by the strong waves (“spurious noise”) generated at the RANS-LES interface because of abruptly emerging strong vortical structures created there by the STG (see, e.g., results of simulation of subsonic flow over airfoil trailing edge in the next section of the report and in ref. [1])
. Thus, some modifications aimed at suppressing this spurious noise without damaging the real noise generated by the flow are necessary in order to make the STG applicable to aeroacoustic problems. Such a modification is outlined below.
2.3
“Acoustically Adapted” STG Version

Proposed way of suppressing the spurious noise created by synthetic turbulence at the RANS-LES interface consists in inserting an “internal damping layer” (IDL) in the LES sub-domain of the zonal RANS-LES. The idea and design of the damping layer is clarified by Fig.4.


The IDL is placed within the overlapping region of the RANS and LES sub-domains. Inside this layer at each time step a “preliminary” (computed by LES) pressure field is modified by “weighting” it with the URANS pressure also available in the overlapping region:
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where the empirical weight function 
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Figure 4: Design of internal damping layer


A drastic positive effect of this simple modification is illustrated by Fig.5 which compares acoustic pressure fields in the trailing edge flow predicted with the use of the original (purely aerodynamic) and the modified versions of the STG within the k- SST based zonal RANS-IDDES (details of this simulation can be found in [1]). One can see that the acoustic field predicted in the simulation using the original STG is dominated by intensive spurious sound waves generated at the RANS/IDDES interface, whereas the simulation with the damping layer results in a radical weakening, if not a complete eliminating of these waves and in revealing of the real sound waves generated by the source located near the sharp trailing edge.. 
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Figure 5: Snapshot of vorticity and instantaneous acoustic pressure fields from zonal RANS-IDDES of trailing edge flow [1] with the use of purely aerodynamic STG (left lower frame) and STG with IDL (right lower frame)


At the same time, introduction of the IDL does not have any negative secondary effects on prediction of the mean flow characteristics and velocity spectra (not shown), at least at low Mach numbers typical of airframe noise problems. Note also that although the real noise sources within the damping layer are significantly damped, the intensity of the wall pressure fluctuations in this region predicted by the original STG (without the damping layer) is strongly overestimated. So, as seen in Fig.6 (upper frame), in this respect, the STG with IDL turns out to be more accurate than the purely aerodynamic STG version even in close vicinity of the RANS-LES interface. The same is true regarding the spectral characteristics of the unsteady wall-pressure in the IDDES sub-domain (see the lower frames of Fig.6). Finally, the damping layer does not prevent capturing sound waves generated by noise sources located downstream of the end of the RANS sub-domain and propagating upstream (within the damping layer, they propagate through the RANS area).
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Figure 6: Effect of IDL on rms of wall-pressure fluctuations in IDDES sub-domain of RANS-IDDES (upper frame) and on power spectra of wall pressure. Empirical correlations shown by symbols are from [9]-[12] 

2.4.
STG Based on Spatially Distributed Volume Source Terms (VSTG)

As mentioned in the Introduction, this approach to creating turbulent content at the inflow of (WM)LES sub-domain in the framework of zonal RANS-(WM)LES methods is, in principle, more tolerant to the grid structure than the NTS STG [1] described above, in which RANS-LES interface must coincide with some grid surface. The approach is based on introducing of specially designed volume source terms (“Body Force” – BF) in the momentum equation and in the turbulent kinetic energy transport equation of a background turbulence model (so far, we have experimented only with the 
[image: image186.wmf]w

-

k

 SST model). These source terms are non-zero in some (user-specified) region, which definition is not “tied” to the grid but, however, relies upon a priory knowledge of a “streamwise” direction. 


Other than that, the VSTG approach has a high potential in terms of adaptation to aeroacoustic problems without using any supplementary tools (like the IDL described in the previous section) thanks to the possibility of a gradual increase of the strength of the volume source in the downstream direction, allowing a reduction of the spurious noise caused by the abrupt emergence of turbulence typical of the “surface” STGs.
2.4.1. VSTG Formulation

Let us, for definiteness, assume that the mean flow within the source area is parallel to the x-axis and that the source region starts at 
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 (RANS-LES “interface”) and has the streamwise width 
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Initially we have attempted to design the VSTG so that assuming a frozen RANS velocity within the source region it would produce at its “downstream end” 
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L

x

x

+

=

0

 the same velocity fluctuations field (synthetic turbulence) as that provided by the “surface” STG [1] at the RANS-LES interface. However, after a set of numerical experiments, we have arrived to the following much more simple purely empirical formulation, which, however, still satisfies the demand of closeness of turbulence produced by the VSTG and the original STG [1].


The source term in the momentum equation reads as:
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where 
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 is the vector of velocity fluctuations within the source region computed with the use of the NTS STG [1] based on the fields of the mean velocity and Reynolds stresses known from the RANS solution, and 
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The sink term introduced into the k-transport equation of the SST background RANS model is defined as follows: 
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where 
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 are the SGS eddy viscosities computed with the use of SST and Smagorinsky models, respectively, and 
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 is the specific dissipation rate involved in the SST model. This sink term results in a rapid drop of 
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 (thus zeroing the sink), i.e. ensures a rapid transformation of the RANS SST eddy viscosity  into the SGS viscosity within the source region.

2.4.2. Note on Implementation of RANS-LES based on VSTG

As seen from the VSTG formulation presented above, its implementation demands knowing of RANS solution in the region of non-zero source terms (14), (16) since these terms involve the synthetic velocity fluctuation vector 
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 which, in turn, depends on the RANS solution. Thus, in the general case, the whole procedure assumes a two-stage approach. In the first stage, RANS solution of the considered flow is carried out
. After that, in the second stage, the RANS-LES simulation is performed with the use of the RANS mean velocity field for computing the source terms (14), (16). However, if the CFD solver used allows overset grids, the RANS stage is not needed since the whole area of the non-zero VSTG sources may be located inside the overlapping region where both the RANS and LES solutions are available simultaneously. 

2.4.3. Validation of VSTG

As of today, the approach outlined above was tested only on one flow, namely, on the compressible subsonic (M=0.5) ZPG BL at the Reynolds number based on momentum thickness at the RANS-IDDES interface x=x0=0 equal to 2∙103.  A comparison of RANS-IDDES predictions obtained for this flow with the use of the original STG and its version with IDL [1] with similar predictions obtained with the use of the VSTG with the function 
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 in (14), (16) defined as a simple piecewise linear function (see Fig. 7) is presented in Figs.8-10.
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Figure 7: Plot of the function 
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Figure 8 compares flow visualizations computed with the use of the STG and STG with IDL with those from simulations with VSTG at different values of the parameter
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. The figure suggests that all the considered methods of creating turbulent content at IDDES inlet ensure forming of realistic turbulent structures right downstream of the RANS-IDDES interface or the end of the volume source region.
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Figure 8: Comparison of instantaneous vorticity fields from simulations with the use of STG, STG with IDL, and VSG at different values of the parameter 
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Figures 9, 10 give an idea on the quantitative capabilities of all the three approaches. Namely, it clearly demonstrates a fairly accurate performance of the STG combined with the IDL in terms of both predicting the mean flow (skin-friction) and unsteady (wall-pressure) flow characteristics. As for simulations using VSTG, at small values of the parameter
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 they results in a considerable deviation of the skin-friction and wall-pressure from the “target” distributions but with increase of this parameter up to about (2-3)BL, they become quite competitive with the STG-IDL approach. 


Thus, the STG-IDL approach is preferable for the solvers accepting structured overlapping grids, whereas the VSTG may be recommended for unstructured solvers, especially considering that its performance probably can be further improved by a better choice of the function 
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Figure 9. Comparison of distributions of mean skin-friction in ZPG BL predicted by RANS-IDDES with the use of original STG, STG combined with IDL, and VSTG at different values of the parameter 
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Figure 10: Comparison of distributions of rms of wall pressure fluctuations predicted by RANS-IDDES with the use of original STG, STG combined with IDL, and VSTG at different values of the parameter 
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3.1
ZDES

The ZDES was first proposed by Deck [1], [2] and the complete formulation has been recently published in Ref .[ 3]. The method is based on a fluid problem-dependent zonalisation and makes possible the use of various formulations within the same calculation.


In the framework of ZDES, three specific hybrid length scale formulations (see Eq. (1)), also called modes, are optimized to be employed on three typical flowfield topologies as illustrated in Figure 1. Though the method can be adapted to any turbulence model, in the framework of the underlying SA model [4], dw is replaced with 
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Figure 1  Classification of typical flow problems. I: separation fixed by the geometry, II:separation induced by a pressure gradient on a gently-curved surface, III: separation strongly influenced by the dynamics of the incoming boundary layer.

Mode 1 concerns flows where the separation is triggered by a relatively abrupt variation in the geometry; mode 2 is retained when the location of separation is induced by a pressure gradient on a gently curved surface, and mode 3 for flows where the separation is strongly influenced by the dynamics of the incoming boundary layer (see Figure 1). All these flow cases may be treated by the same ZDES technique in its different modes. An example where the three modes of ZDES are used at the same time on a curvilinear geometry can be found in [5].
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Figure 2  Main Wall-bounded turbulence simulation strategies

The ability of ZDES mode 3 to operate in both Wall Resolved Large Eddy Simulation (WRLES) and Wall-Modelled Large Eddy Simulation (WMLES) has been exercised in [ 6][ 9] and [ 7][ 8][ 11].

In the framework of Work package WP3, only the mode 3 of the ZDES approach in its WMLES branch will be used (see Figure 2). The location of the interface results from the length scale used for mode 3 which reads as:
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with CDES=0.65 and ( is the subgrid length scale entering the model and is defined by (=((x(y(z)1/3. The switching into LES mode occurs at a given altitude 
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 prescribed by the user as sketched in Figure 3 (see Ref [6]).
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Figure 3: ZDES simulation set up in the case of the flat plate turbulent boundary layer
3.2.
Turbulence generation method adapted to ZDES (mode 3)


As soon as part of the boundary layer is resolved in LES mode, a turbulent content has to be injected at the inlet of the domain in order to match the low-order statistics given for example by a RANS calculation as well as to prevent turbulence decay, which may lead to relaminarization.

An adaptation of the synthetic eddy method by Jarrin et al [12], proposed by Pamiès et al [13] and extended to ZDES by Deck et al [9] is adopted for this purpose.


The basis is to generate a velocity signal with prescribed first and second order moments as follows 
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The instantaneous velocity component ui is built with a time average part Ui(y) and a random sequence 
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 defined as the superposition of turbulent structures with prescribed time and length scales and geometrical shape (ie vorticity content) which are randomly positioned in the inlet plane. Aij denotes the Cholesky decomposition of the Reynolds stress tensor. The method M2 of Ref [11] (based on Wilcox’s hypothesis) has been retained to generate the inlet profiles from a RANS calculation using the SA model. 

As wall-bounded flows are populated with eddies, which sizes depend on their distance to the wall, an adaptation of the Synthetic Eddy method to such flows has been proposed by Pamiès et al. [13], which consists in taking into account the various coherent structures which populate turbulent boundary layers. Thus, one is able to specify the shape, the time scale as well as the length scale of the injected structures according to their altitude. In practice, it consists in the specification of P modes (typically 
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) are assigned to each structure depending on their wall distance. In other words, one is able to specify the shape, the time scale as well as the length scale of the injected structures according to their altitude.
The synthetic velocity field is defined as follows:
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. The number of structures per mode is given by 
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 where Sp is the area of the region in which mode p is defined and SS is the cross-section of the vortex associated to mode p.


The random time of appearance tk of each vortex as well as the coordinates yk and zk of the vortex are randomly chosen within the domain 
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 where Lz is the spanwise size of the domain. With these definitions, the surface of the transverse plane may be computed as 
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 while the transverse surface of the support of the shape function is 
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 denote respectively the shape functions of mode p in time and in the wall-normal and wall-transverse directions. Besides, Taylor’s frozen hypothesis is used to define the time scale 
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 is the stream-wise length scale of the structure and cp its convection velocity.


All these parameters must be tuned to mimic physical coherent structures. The novelty of this modified SEM is that physical information concerning the coherent vortical structures are extracted from the literature and used in the definition of the modes. An example of set of kinematic and associated geometric parameters used within ZDES mode 3 is gathered respectively in Table 1 and Table 2. This set of parameters needs a degree of adjustment in the frame of WMLES grids. Note also that one of the interest of this method is that a same eddy (like hairpin) can populate several regions of the boundary layer as observed in experiments
Table 1 : Locus of the center, sizes and convection velocity of turbulent structures associated with the 4 modes, expressed in wall units. 
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 denote respectively the boundary layer thickness and the external velocity at the inlet
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Table 2 : Analytical expression of the shape functions 
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Here H is defined by 
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 and C=0.214 is a normalization factor. G is the Gaussian function 
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 being the reference scale parameter.
The extension of this method to ZDES (mode 3), where an unsteady eddy viscosity has to be specified, has been proposed by Deck et al.[9] . The eddy viscosity field is reconstructed from the synthesized velocity field as follows:
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where CS=0.1 is the Smagorinsky constant and S(t) (respectively <S>) the magnitude of the instantaneous vorticity built from the synthetic velocity field given by Eq (4) (respectively the vorticity calculated from the mean inflow velocity profile), l is the mixing length valid over the entire boundary layer which was proposed by Michel et al [ 10]:
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D is the Van Driest Damping function given by 
[image: image251.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

-

=

+

26

exp

1

w

d

D



The pseudo eddy viscosity field 
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can be computed explicitly from the turbulent one 
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. This comes from the Spalart-Allmaras turbulence model which allows to get the following fourth order polynomial equation in 
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An analytic solution of this fourth-order polynomial equation is detailed in [9]. As an example, Figure 4 presents of the contours of the streamwise component of the velocity and pseudo-eddy viscosity generated at the inlet of a ZDES mode 3 computation as described in the previous sections.
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Figure 4  Instantaneous streamwise velocity (upper part) and instantaneous pseudo-eddy viscosity field 
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(lower-part) in the inlet in the framework of ZDES mode 3
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4.1. Overview of the Divergence-free synthetic eddy method


In the Divergence-free synthetic eddy method (DFSEM), virtual eddies are created and convected through a virtual Cartesian box. The box size is set to cover the whole inlet, and is then extended in each direction by the maximum integral lengthscale of the prescribed turbulence on the inlet, such that all points on the inlet will be completely surrounded by eddies. Eddies are generated randomly within the box, and are given a size, equal to the local integral length scale of the nearest face of the inlet to the eddy. The number of eddies is set so as to give complete statistical coverage at all points on the inlet, which in practice involves setting the number of eddies equal to the integer ratio of the volume of the box to the product of the number of eddies and the volume of the smallest eddy. The 3D velocity field generated by this process is sampled at the inlet. See Figure 1.


At each time-step, eddies are convected by the bulk velocity.  Any eddies leaving the box within a timestep are regenerated randomly on the opposite face of the box to that on which they left. A fluctuation to the mean velocity is applied within the region covered by the eddy (the support of an eddy is defined by its lengthscale). Fluctuations are weighted by a shape function such that the contribution of an individual eddy drops to zero at the edge of the eddy. The challenge is then to set the intensity of the eddy such that the prescribed first and second order statistics are satisfied. The remainder of this document shall outline the procedure followed to achieve this.


Herein, we adopt standard tensor notation, and further define that implied summation is not performed over repeated sub-indices within parenthesis. In the divergence-free synthetic eddy method (DFSEM), a fluctuating velocity field can be found by working with the vorticity field before converting the result back to velocity fluctuations. The interested reader is referred to [1] for details. Here we simply state the result:
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In Equation (1): C1 is a normalisation constant, necessary to account for the “density” of eddies (to be defined presently); ε is the Levi-Civita symbol; σk and αk are the lengthscale and intensity of the kth eddy respectively; and q is a ‘shape function’ (a weighting based on the distance from the eddy centre), defined as:
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where rj is the normalised distance from the eddy centre, given by:
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For convenience, we work in the principle coordinate system, where the Reynolds stress tensor is diagonal. The fluctuations generated in the principle coordinate system are then transformed back to the local system. The intensity, α, is set such that the prescribed first and second order statistics will be realised, and is given by:
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where λ are the eigenvalues of the target Reynolds stress tensor (equal to the normal stresses in the principle coordinate system), γ is a random integer equal to 1 or −1 with equal probability, and C2 is an additional normalisation constant.


The eddy lengthscale is initially set to
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where k and ε are the turbulent kinetic energy and dissipation rate respectively, and ∆ is the mesh size. It can be seen from (4) that the eddy length scale is linked to the intensity. Since we require a real value for the eddy intensity, the right hand side of (4) must be positive. However, the length scale given by (5) will not, in general, satisfy this requirement (particularly where there is a disparity between stress components, as is typically the case close to a wall).


As such, the lengthscale of an eddy whose intensity has an imaginary component is stretched (in the direction of the largest eigenvalue), while preserving its volume. The stretching ratio, Γ(≡ σ /σ ≡ σ /σ ) is arbitrarily set to sqrt(2), sqrt(3),  and so on, until a suitable stretching ratio is found such that all components of the intensity vector are real. This gives realisable stress states that covers the majority of the Lumley triangle (Figure 2). A different set of ratios can be selected to cover more of the triangle if desired, though this was not found to be beneficial for channel flow test cases presented in [1].


Finally, the normalization constants C1 and C2 involved into the equations (1) and (4) respectively are defined as follows. 


The first constant C1 is used to account for the “density” of eddies, and is given by:
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where V0 is the volume of the eddy box. Equation 6 is strictly valid only under the assumptions of a uniform eddy distribution and a constant eddy size.


The second normalisation constant, C2, is used to account for the fact the magnitude of integral of the shape function is altered with changing Γ (effectively giving a different eddy intensity for different Γ; C2 corrects for this spurious effect). Suitable values of C2 over a selection of Γ are given by Table 1.
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4.2. New Formulation


In the new formulation, we redefine the eddy intensity as:
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where ⟨qj2⟩ is a running average of the shape function, based on the contribution from all eddies at the same Γ. A separate running average is evaluated for each Γ considered (a total of 8 in the present study). In this way, constants C1 and C2 are eliminated (in effect C1 ≡ 1 in (1)).


We have also redefined the shape function as:
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where the modification is required in order to render the shape function dimensionless; a necessary feature of the present formulation in order to maintain the correct overall normalisation.
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Figure 1: Schematic of SEM applied to embedded LES (ELES)
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Figure 2: Regions of the Lumley triangle that are mapped with 9 different Γ ratios.
� For linear RANS models, the normal stresses are usually set equal to 2/3 of the turbulent kinetic energy k (if k is not available from RANS, e.g., for the Spalart-Allmaras model [6], it can be approximated by � EMBED Equation.3  ���).


� Note that the definition of a proper unique single value of U0 in complex 3D aerodynamic flows, e.g., in a flow past a swept wing, is problematic.


� As noted in the Introduction, this is not a unique feature of the considered STG, but an inherent property of any known STG


� In principle this solution may be obtained only in a part of the computational domain containing the VSTG source region.
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