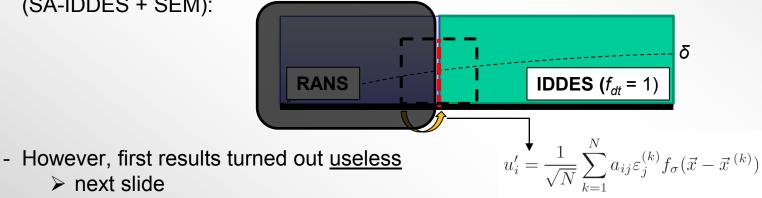
Meeting M04 (Amsterdam) - DLR: Status and future activities

Grey Area Mitigation for Hybrid RANS-LES Methods

19-20/03/2015

DLR work plan in Go4Hybrid Updated

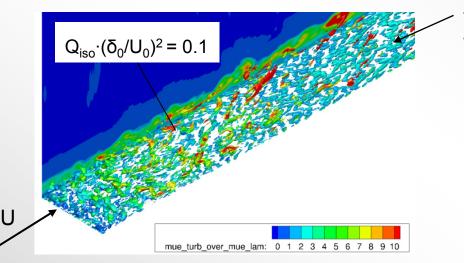
- DLR contributes in WP 3.1, 3.2 (Embedded methods) and 4.2
- Basic model development / implementation in DLR-TAU / (THETA) Code:
 - generalized framework for synthetic turbulence methods, e.g. (DF-)SEM, STG
 - insert synthetic turbulence at RANS/LES interface from ADDES
 - combination with automatic grid adaptation in LES regions
- Test cases:
 - 1. Flat plate (F.1)
 - basic tests of synthetic turbulence implementations in DLR-TAU
 - different turbulence generators and RANS "input" models (up to RSM)
 - 2. <u>2D hump flow</u> (I.4)
 - basic tests of ADDES + synthetic turbulence + grid adaptation
 - 3. <u>3-element high-lift airfoil</u> (I.3, coordinated by DLR)
 - test full approach in consecutive steps: LES only on flap, LES only in slat cove, final combined simulation (if time permits)


TC.F1: Flat plate flow

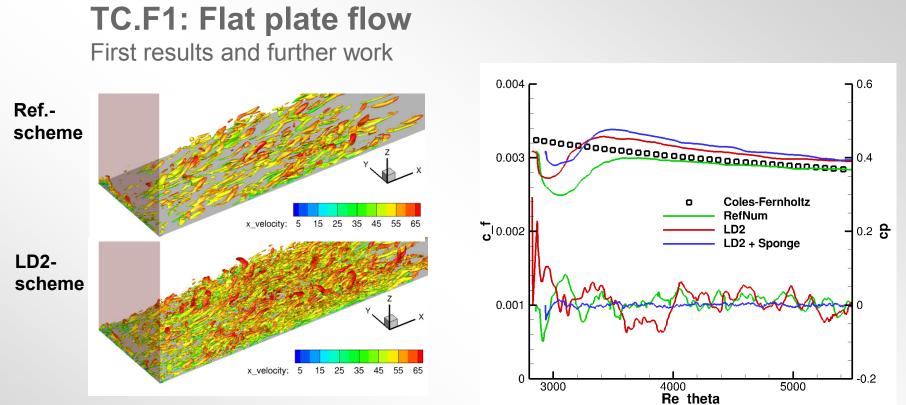
Basic development & assessment of SEM in DLR-TAU

(Preparatory) Work performed:

- implementation of (DF-)SEM in unstructured compressible DLR-TAU solver
 - 1st step: restriction to inflow boundary
- development & verification of (hybrid) low-dissipation/low-dispersion scheme (LD2)
 - \triangleright essential for decent c_f-recovery in plane channel
- implementation & validation of RSM-IDDES (special DLR interest)
- all applied to mandatory flat-plate setup


(SA-IDDES + SEM):

TC.F1: Flat plate flow "Bug tracking"

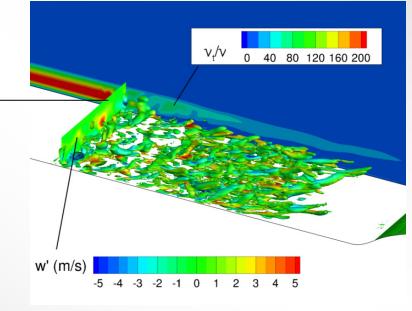

- strange development of Q-criterion
- no c_f-recovery!
- In-depth analysis performed:
 - step-by-step verification of SEM in TAU
 - tested alternative definition for σ_{SEM}
 - used acoustic sponge layer to damp inlet-pressure disturbances
 - checked underlying hybrid model (SA-IDDES) in plane channel

Finally:

- found rare TAU-bug: 2D-simplifications active despite 3D case!
- fix directly solved problems
- delay of 2-3 months, compensated by reduced work plan

Further work plan:

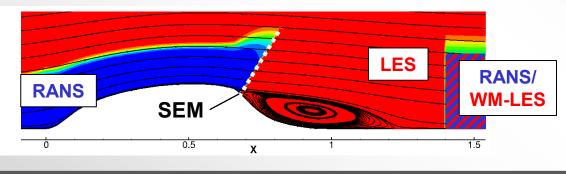
- DF-SEM (to be discussed with UniMAN) + SA-IDDES
- Finalizing running simulations:
 - SEM (with RSM-input data) + RSM-IDDES
 - SEM + SA-IDDES with hybrid LD2-scheme



TC.I4: 2D hump flow State of work

(Preparatory) Work performed:

- implementation of (DF-)SEM in unstructured compressible TAU solver
 - 2nd step: forcing inside flow domain via volume sources
 - coupling with AIDDES ("automatic" embedded-LES) ongoing
- reference simulation with mandatory settings, but global SST-IDDES (+ Δ_{ω})
- embedded simulations running:
 - SEMorg (vol. sources) + SST-IDDES
 - first mandatory interface (x = -1)
 - 2 different time steps (mand. and half)
 - ~6 CTUs (of 30) finished



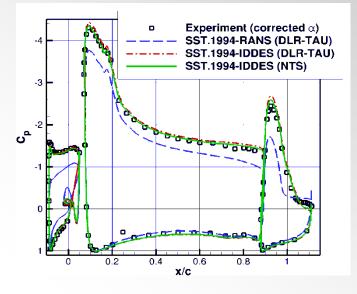
TC.I4: 2D hump flow

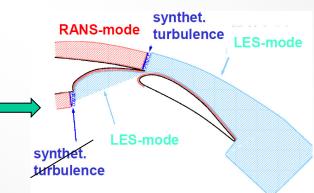
Further work plan

Further work plan:

- finalize SST-IDDES + SEM (x = -1) and evaluate results
- depending on observations:
 - consider DF-SEM (if promising according to TC.F1)
 - consider acoustic sponge layer around interface
 - consider damping source term for modelled turbulence behind interface
- probably skip:
 - second interface position (x = 0.5)
 - RSM-IDDES + SEM
- ... in favor of demonstrating "automatic" embedded approach:

TC.I3: 3-element airfoil


Status and further work


(Preparatory) Work performed:

- SST-IDDES simulations with mandatory settings, but no synthetic turbulence
- comparison with equivalent NTS simulations:
 - overall good mean-flow agreement
 - improved aero-acoustic agreement with hybrid LD2-scheme in TAU

Further work:

- embedded simulation to be started:
 - SST-IDDES with fixed interface (volume sources)
 - orig. or DF-SEM depending on other TC's
 - probably only time for just one embedded setup

