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Approaches applied 

 Development of DDES that switches to WALE and σ 
models of Nicoud et al. in LES mode 

 WALE: Responds to vortices, not to plane shear 

 σ: Responds to 3D structures, not 2D/2C flow states 

 We have applied this modification alone as well as in 

combination with the ∆ 𝜔 adaptive length scale definition 
formulated by NTS 

 

 Significant reduction of eddy viscosity in initial shear layer 

 Maintains non-zonal and local formulation 

 Hence “generally-applicable method” 
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σ and WALE-DDES 

 Coupling WALE and σ models with (D)DES: 
 We keep the (D)DES length scale unchanged 

 The velocity gradient invariant of the underlying RANS model, 
𝑆∗𝑅𝐴𝑁𝑆 is substituted with the WALE or σ formulation in LES 
mode regions only 

 For S-A based DES, 𝑆∗𝑅𝐴𝑁𝑆 = 2Ω𝑖𝑗Ω𝑖𝑗  

 Blending function for DDES: 
 

 

 

 

 Coefficient B gives same value of CDES irrespective of WALE/σ 
modification 
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Basic tests 

 Decaying isotropic 
turbulence used to show 
for “fully-developed” 
turbulence: 

 That standard DES, WALE-
DES and σ-DES all give 
equivalent behaviour 

 With calibrated values of 
model constants 

 That ∆ 𝜔 gives equivalent 
behaviour to ∆𝑚𝑎𝑥 
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Basic tests 

 Flat plate boundary layer with “ambiguous” grid used to 
test WALE-DDES and σ-DDES shield functions 

 Recalibration from 𝐶𝑑1 = 8 to 𝐶𝑑1 = 10 needed to give 
equivalent functionality to SA-DDES  
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F2 – test case setup 

 Pressure-based incompressible solver 

 Turbulence modelling approach:  non-zonal delayed DES 

 Numerical convection scheme: 2nd order central 
differences 

 Time step size: 

 Coarse grid: Δt = 4 x 10-5  

 Fine grid: Δt = 2 x 10-5  

 Averaging time for statistics: 

 tavg = 0.8 – 1.37 s = 25.7 – 44 CTU                                               
(1 CTU based on UM = 32.1 m/s and L = 1 m) 
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F2 – test case setup 

coarse grid (small domain) – 1.4 x 106 cells fine grid (small domain) – 10.3 x 106 cells 

 2 grids used so far: 

 Fine grid (small domain) as provided by J. Kok (NLR) 

 Coarse grid (every 2nd grid point in each direction) 

 except for x-resolution on plate to maintain equivalent 
velocity profiles at leading edge 
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F2 – test case setup 

 Spalart-Allmaras as RANS background model for all 
simulations 

 Length of BL section and transition location taken from 
paper of S. Deck: 

 

 

 

 Upper leading edge -
0.82m,                                 
transition at -0.708m 

 Lower leading edge -
0.46m,                               
transition at -0.388m 

 

 

 

 

Small domain seems to be OK for incompressible 
OpenFOAM® solver 
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F2 - conducted simulations 

SA-DDES SA-WALE-
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SA-DDES SA-WALE-DDES SA-σ-DDES 

F2 - results 
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∆𝑚𝑎𝑥 

∆ 𝜔 

 Turbulent structures visualised via Q criterion shaded by 
vorticity magnitude 



 DDES variants with Δmax:  

F2 - results 
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SA-DDES 

SA-WALE-DDES 

SA-σ-DDES 



 DDES variants with        : 

F2 - results 
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SA-DDES 

SA-WALE-DDES 

SA-σ-DDES 
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F2 - results 

coarse grid 

 Streamwise velocity component: 
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F2 - results 

coarse grid 

 Resolved Reynolds stress component u‘v‘: 



F2 - results 
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coarse grid 



F2 - results 
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fine grid 

results do not improve with grid 
refinement so far  
 Penalty of reduced eddy viscosity in 
early shear layer is higher 



F2 - results 
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Next steps 

 Assessment of new methods for “natural” DES 
application: 

 e.g. NACA0021 

 Go4Hybrid test cases until next meeting in October: 

 Jet 

 Delta Wing 

 Test σ/WALE-DDES for WMLES of channel flow 
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Δ 𝜔 - approach of NTS 

 The maximum cell length is normally used in DES 

 ∆𝑚𝑎𝑥= max(∆𝑥, ∆𝑦, ∆𝑧) 

 Typically, shear layers are resolved more coarsely in the 
spanwise, z direction 

 i.e. ∆𝑧≫ ∆𝑥, ∆𝑦 

 The early shear layer is characterised by 2D structures in 
the x,y plane 

 It seems justified to reduce to max(∆𝑥 , ∆𝑦) in such 

situations 

 Dominance of ∆𝑧 in ∆𝑚𝑎𝑥contributes to excessive eddy 
viscosity in early shear layer 
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Δ 𝜔 - approach of NTS 

 Similar principle to adaptive formulation of Chauvet et al. 
(2011), ∆𝜔 
 Sensitised to the orientation of vorticity vector with grid 

 However, in “2D flow regions”, their formulation reduces to 
∆𝑥∆𝑦 

 Undesirable in the same way as the cube root formulation, since 
the smallest dimension has too much influence 

 We propose an alternative: 

 

 
 where                                     ,      is the cell centre,        are cell 

vertices and      is the unit vector aligned with the vorticity vector. 

 This gives                             in “2D flow regions” 
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Alternative SGS models in LES mode 
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WALE and σ models 
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WALE model: σ model: 

the three singular 

values of the velocity gradient tensor 



F2 – flow solver used by CFDB 

 Customised version of OpenFOAM®  
 Open source software 

 Unstructured (arbitrary polyhedral cells) 

 Cell-centred, finite volume solver 

 2nd order accurate in space and time 

 Incompressible solver employed here 

 SIMPLE-like pressure-velocity coupling 

 Customised features: 
 State-of-the-art, validated & calibrated DES models 

 Hybrid convection scheme of Travin et al. for DES 

 Local blending between 2nd order upwind and 2nd order central 
schemes 

 Improved transient solver 
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F2 - results 
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SA-σ-DDES + ∆ 𝜔  
fine grid 
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F2 - numerics 

 2nd order central differences are assured within the shear 
layer focus region („box solution“): 

 

 

 

 



30 

F2 - setup 

 Evolution of upper and lower „farfield“ values of 
reference velocities (coarse grid): 

 

 

 



F2 - results 
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SA-DDES SA-WALE-DDES SA-σ-DDES 

∆𝑚𝑎𝑥 

∆ 𝜔 

 Zoom (0 < x < 0.2m) 


