Progress in Go4Hybrid since KoM at CFDB

M. Fuchs, C. Mockett, F. Thiele

CFD Software E+F GmbH

CFD Software Entwicklungsund Forschungsgesellschaft mbH

Method development since KoM

Approaches applied

- Development of DDES that switches to WALE and σ models of Nicoud et al. in LES mode
 - WALE: Responds to vortices, not to plane shear
 - σ: Responds to 3D structures, not 2D/2C flow states
- We have applied this modification alone as well as in combination with the $\tilde{\Delta}_\omega$ adaptive length scale definition formulated by NTS
- Significant reduction of eddy viscosity in initial shear layer
- Maintains non-zonal and local formulation
 - Hence "generally-applicable method"

Go4

σ and WALE-DDES

- Coupling WALE and σ models with (D)DES:
 - We keep the (D)DES length scale unchanged
 - The velocity gradient invariant of the underlying RANS model, S^{*}_{RANS} is substituted with the WALE or σ formulation in LES mode regions only
 - For S-A based DES, $S^*_{RANS} = \sqrt{2\Omega_{ij}\Omega_{ij}}$
- Blending function for DDES:

$$S_{(W,\sigma)-DDES}^{*} = S_{RANS}^{*} - f_{d} \operatorname{pos}(L_{RANS} - L_{LES}) (S_{RANS}^{*} - B_{W,\sigma} S_{W,\sigma}^{*})$$
$$\operatorname{pos}(a) = \begin{cases} 0 & \text{, if } a \le 0\\ 1 & \text{, if } a > 0 \end{cases}$$

 Coefficient B gives same value of C_{DES} irrespective of WALE/σ modification

$$B_{W,\sigma} = C_{W,\sigma}^2 / C_S^2$$

Go4H

Basic tests

- Decaying isotropic turbulence used to show for "fully-developed" turbulence:
 - That standard DES, WALE-DES and σ-DES all give equivalent behaviour
 - With calibrated values of model constants
 - That $\tilde{\Delta}_{\omega}$ gives equivalent behaviour to Δ_{max}

Basic tests

 Flat plate boundary layer with "ambiguous" grid used to test WALE-DDES and σ-DDES shield functions

Go4Hybrid

• Recalibration from $C_{d1} = 8$ to $C_{d1} = 10$ needed to give equivalent functionality to SA-DDES

Initial results: Spatial shear layer test case

F2 – test case setup

- Pressure-based incompressible solver
- Turbulence modelling approach: non-zonal delayed DES
- Numerical convection scheme: 2nd order central differences
- Time step size:
 - Coarse grid: Δt = 4 x 10⁻⁵
 - Fine grid: Δt = 2 x 10⁻⁵
- Averaging time for statistics:
 - t_{avg} = 0.8 1.37 s = 25.7 44 CTU (1 CTU based on U_M = 32.1 m/s and L = 1 m)

Go4Hy

F2 – test case setup

- 2 grids used so far:
 - Fine grid (small domain) as provided by J. Kok (NLR)
 - Coarse grid (every 2nd grid point in each direction)
 - \rightarrow except for x-resolution on plate to maintain equivalent velocity profiles at leading edge

Go4H

F2 – test case setup

 Spalart-Allmaras as RANS background model for all simulations

OpenFOAM® solver

- Length of BL section and transition location taken from paper of S. Deck:
 - Upper leading edge -0.82m, transition at -0.708m
 - Lower leading edge -0.46m, transition at -0.388m

CFD Software E+F GmbH

F2 - conducted simulations

coarse grid

	SA-DDES	SA-WALE- DDES	SA-σ-DDES
Δ_{max}	X	X	X
$\widetilde{\Delta}_{\boldsymbol{\omega}}$	X	X	X

fine grid

	SA-DDES	SA-WALE- DDES	SA-σ-DDES
Δ_{max}			
$\widetilde{\Delta}_{\boldsymbol{\omega}}$		X	X

Turbulent structures visualised via Q criterion shaded by vorticity magnitude

F2 - results

F2 - results

• DDES variants with $\widetilde{\Delta}_{\omega}$:

Go4Hybrid

• Streamwise velocity component:

coarse grid

Resolved Reynolds stress component u'v':

coarse grid

F2 - results

CFD Software E+F GmbH

F2 - results

19

x = 0.2m

x = 0.8m

- Assessment of new methods for "natural" DES application:
 - e.g. NACA0021
- Go4Hybrid test cases until next meeting in October:
 - Jet
 - Delta Wing
- Test σ/WALE-DDES for WMLES of channel flow

Thank you for your attention

Extra slides

Δ_{ω} - approach of NTS

The maximum cell length is normally used in DES

• $\Delta_{max} = \max(\Delta_x, \Delta_y, \Delta_z)$

- Typically, shear layers are resolved more coarsely in the spanwise, z direction
 - i.e. $\Delta_z \gg \Delta_x$, Δ_y
- The early shear layer is characterised by 2D structures in the x, y plane
- It seems justified to reduce to $max(\Delta_x, \Delta_y)$ in such situations
- Dominance of Δ_z in Δ_{max} contributes to excessive eddy viscosity in early shear layer

Go4

$\tilde{\Delta}_{\omega}$ - approach of NTS

- Similar principle to adaptive formulation of Chauvet et al. (2011), Δ_{ω}
 - Sensitised to the orientation of vorticity vector with grid
- However, in "2D flow regions", their formulation reduces to $\sqrt{\Delta_x \Delta_y}$
 - Undesirable in the same way as the cube root formulation, since the smallest dimension has too much influence
- We propose an alternative:

$$\tilde{\Delta}_{\omega} = \frac{1}{\sqrt{3}} \max_{n,m=1,8} |(\mathbf{l}_n - \mathbf{l}_m)|$$

• where $\mathbf{l}_n = \mathbf{n}_{\omega} \times (\mathbf{r}_n - \mathbf{r})$, \mathbf{r} is the cell centre, \mathbf{r}_n are cell vertices and \mathbf{n}_{ω} is the unit vector aligned with the vorticity vector.

• This gives $O(\max{\{\Delta_x, \Delta_y\}})$ in "2D flow regions"

Go4

Alternative SGS models in LES mode

$$\mathbf{v}_{sgs} = (C_{sgs}\Delta)^2 \, \mathscr{D}_{sgs}(u) \qquad \qquad B_{W,\sigma} = C_{W,\sigma}^2 / C_S^2$$

Model	C_{sgs}	$\mathcal{D}_{sgs}(u)$
Smagorinsky [10]	C_S	$\sqrt{2S_{ij}S_{ij}}$
WALE [7]	C_W	S_W^*
σ [8]	C_{σ}	S^*_{σ}
DES [13, 12]	$\sqrt{A} C_{DES} \Psi$	S^*_{RANS}
WALE-DES	$\sqrt{A} C_{DES} \Psi$	$B_W S_W^*$
σ-DES	$\sqrt{A} C_{DES} \Psi$	$B_{\sigma} S_{\sigma}^*$

Parameter	Calibrated value		
C_S	0.20		
C_W	0.58		
C_{σ}	1.68		
C _{DES} (for SA-DES)	0.65		
B_W	8.08		
B_{σ}	67.8		

WALE and o models

Model	Smagorinsky (Ref. 1)	WALE (Ref. 5)	Vreman (Ref. 6)	σ -model
Operator	$\sqrt{2S_{ij}S_{ij}}$	Eq. (4)	Eq. (5)	Eq. (20)
Model constant	$C_s pprox 0.165$	$C_w \approx 0.50$	$C_{v} \approx 0.28$	$C_{\sigma} \approx 1.35$
P0	Yes	Yes	Yes	Yes
Asymptotic	$O(y^0)$	$O(y^3)$	$O(\mathbf{y})$	$O(y^3)$
P1	No	Yes	No	Yes
Solid rotation	0	~ 0.90	~0.71	0
Pure shear	1	0	0	0
P2	No	No	No	Yes
Axisymmetric	~3.46	~ 0.15	~ 1.22	0
Isotropic	~2.45	0	1	0
Р3	No	No	No	Yes

WALE model:

$$\mathcal{D}_{w} = \frac{(\mathcal{S}_{ij}^{d} \mathcal{S}_{ij}^{d})^{3/2}}{(S_{ij} S_{ij})^{5/2} + (\mathcal{S}_{ij}^{d} \mathcal{S}_{ij}^{d})^{5/4}}$$

$$S_{ij}^d = \frac{1}{2}(g_{ij}^2 + g_{ji}^2) - \frac{1}{3}g_{kk}^2\delta_{ij}, \text{ with } g_{ij}^2 = g_{ik}g_{kj}.$$

σ model:

$$\mathcal{D}_{\sigma} = \frac{\sigma_3(\sigma_1 - \sigma_2)(\sigma_2 - \sigma_3)}{\sigma_1^2}$$

 $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge 0$, the three singular values of the velocity gradient tensor $\mathbf{g} = (g_{ij})$.

F2 – flow solver used by CFDB Go4Hybrid

- Customised version of OpenFOAM[®]
 - Open source software
 - Unstructured (arbitrary polyhedral cells)
 - Cell-centred, finite volume solver
 - 2nd order accurate in space and time
 - <u>Incompressible</u> solver employed here
 - SIMPLE-like pressure-velocity coupling
 - Customised features:
 - State-of-the-art, validated & calibrated DES models
 - Hybrid convection scheme of Travin et al. for DES
 - Local blending between 2nd order upwind and 2nd order central schemes
 - Improved transient solver

F2 - numerics

 2nd order central differences are assured within the shear layer focus region ("box solution"):

Go4Hybrid

 Evolution of upper and lower "farfield" values of reference velocities (coarse grid):

Go4Hybrid

F2 - setup

